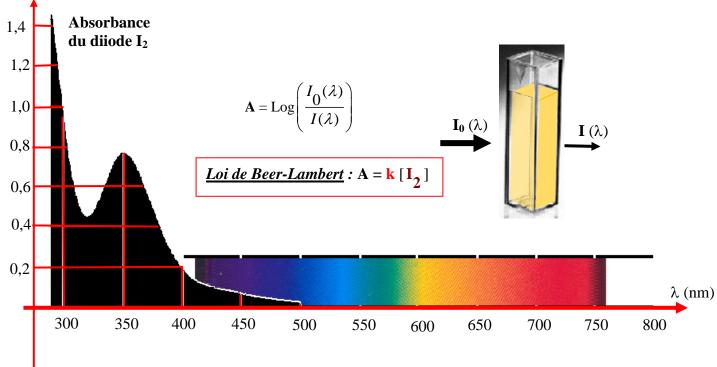


Cinétique par spectrophotométrie

Objectifs

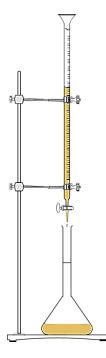
- Observer l'évolution temporelle d'un système chimique
- Comprendre la spectrophotométrie d'absorption :


Loi de Beer-Lambert

• Suivre l'avancement au cours d'une réaction chimique : « Temps de demi réaction ».

Principe

		$\mathbf{S_2O_8^{2-}}$	+ 2 I - (aq)	$= \mathbf{I}_{2(aq)}$	+ 2 SO ₄ (aq)
État initial	x = 0	$n_{S_2O_8^2}^0-$	n_{I}^{0}	0	0
État intermédiaire « t »	x = x(t)	$n_{S_2O_8^2-}^0-x$	n ⁰ _I 2x	X	2 x
État final	$\mathbf{x} = \mathbf{x}_f$	$n_{S_2O_8^{2-}}^0 - x_f$	$n_{I}^0 - 2x_f$	x f	2 x _f



1. Échantillonnage

Échelle en concentrations

On dispose d'une solution aqueuse de diiode de concentration molaire $C_0 = 1,0 \times 10^{-3} \text{ mol.L}^{-1}$. On cherche à réaliser différentes solutions de diiode de concentration C_f connues :

Fiole	Volume V ₀ à	[I ₂] solution
	prélever	diluée
	mL	mmol.L ⁻¹
1	4,0	0,20
2	8,0	0,40
3	12	0,60
4	16	0,80
5	20	1,0

- Introduire dans des fioles jaugées de 20 mL les volumes V₀ de solution mère de diiode. Compléter à 20 mL avec de l'eau distillée. Homogénéiser.
- Calculer littéralement la concentration fille [I₂] de la solution diluée n°3.

- Loi de Beer-Lambert

- Introduire chaque solution de diiode dans une cuve à spectrophotométrie les concentrations doivent être repérées.
- Préparer également une cuve d'eau distillée.
- Régler le spectrophotomètre sur $\lambda_m = 350$ nm car c'est pour cette longueur d'onde que le diiode absorbe le plus.
- Faire le réglage au « blanc » (A = 0 pour la cuve remplie d'eau distillée.
- Mesurer l'absorbance de chacune des solutions réalisée.
- Tracer A = f([I₂]) : loi de Beer-Lambert. Calculer la pente k
 de la droite linéaire A = k [I₂].

2. <u>Cinétique de la réaction entre les ions peroxodisulfate et les ions iodure</u>

- La réaction

- Mélanger dans un bécher 9,0 mL d'iodure de potassium à 5.0×10^{-1} mol.L⁻¹ et 1,0 mL de peroxodisulfate de potassium à 0,010 mol.L⁻¹.
- Déclancher immédiatement le chronomètre et remplir une cuve avec la réaction. La placer dans le spectrophotomètre.
- Relever « à la volée » le plus souvent possible temps et Absorbance.

<i>t</i> (s)	0	•••	•••	
\boldsymbol{A}	0			

- Courbe cinétique x = f(t)

A l'aide d'un tableur ou de la calculatrice, compléter le tableau de ses 2 dernières lignes

$$\frac{A}{\mathbf{k}} = [\mathbf{I_2}] = \frac{n(\mathbf{I_2})}{V} = \frac{\mathbf{x}}{V}$$

t(s)	0	•••	•••	
\boldsymbol{A}	0			
[I ₂] (mmol.L ⁻¹)	0			
x (en 10 ⁻⁵ mol)	0			

- Tracer le graphe $\mathbf{x} = f(t)$.
- Déterminer l'avancement maximal \mathbf{x}_f et montrer que $\mathbf{x}_f = \mathbf{x}_{max}$. En déduire la concentration théorique attendue de diiode en fin de la réaction.
- Quelle observation expérimentale indique que la transformation est terminée.

- <u>Vitesse volumique et temps de demi raction</u>

- Déterminer $t_{1/2}$.
- Comparer les vitesses volumiques aux dates $t_1 = 120$ s et $t_2 = 600$ s. Commenter

Données

	diiode	Peroxodisulfate de potassium		
	(iodine)	(oxidooxysulfonyl sulfate)		
Formule brute	I_2	$S_2O_8^{2-}; 2K^+$		
Formule topologique	1—1	0 K+ K+		
masse molaire moléculaire (g.mol ⁻¹)	256	270		
masse volumique (g.mL ⁻¹)	3,96	2,48		
Solubilité dans l'eau (g.L ⁻¹)	0,583	50		
Température d'ébullition (°C)	184			
Pictogramme de sécurité				
Phrases de risques	 Toxique, irritant, sensibilisant, narcotique Danger pour le milieu aquatique. 	 Toxique, irritant, sensibilisant, narcotique Matières comburantes, Sensibilisant, mutagène, cancérogène, reprotoxique. 		