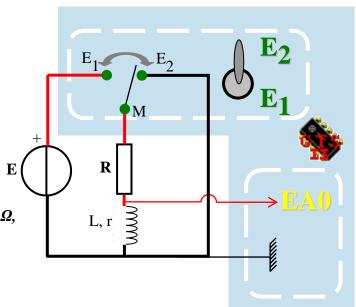


Évolution temporelle d'un dipôle R, L : Temps caractéristique


But de la manipulation

- Comparer les comportements des solénoïde et condensateur en régime transitoire.
- Le dipôle R,L série : Sa « constante de temps ».

Protocole expérimental

- Réaliser le montage alimentation éteinte.
- $R = 1 k\Omega,$ $L = 1.1 H, r \approx 10 \Omega,$ E = 5 V
- ☞ Acquérir u_{L,r}.
 - Basculer de E₁ à E₂
 provoque sur « EF0 »:

 « ↑ un front montant » à l'ouverture en E₁
 puis,
 « ↓ un front descendant » à la

Appel du professeur

Régler le balayage et le calibre EA0 pour une meilleure observation.

 \mathcal{F} Traiter de l'acquisition dans Excel et tracer $u_{L,r} = f(t)$.

Interprétations

Aspect qualitatif

Le solénoïde est le siège d'une « **auto-induction** » créant ainsi les régimes transitoires de $\mathbf{u}_{\mathbf{L}}$, lors de l'établissement ou l'extinction du courant **i**. Donner une interprétation microscopique de ce phénomène et invoquer la loi de Lenz.

Aspect quantitatif

 T_L est le temps caractéristique du dipôle R, L série. En donner une définition analogue au cas d'un dipôle R, C.

Téterminer la constante de temps du dipôle R, L.